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Abstract: This paper discusses the stochastic resonance (SR) effect in a binary communication
system for subthreshold signal reception. We focus on the problem of no communication when
received signal strength is below receiver sensitivity. Subthreshold signal reception requires a
device that exhibits SR, such as a Schmitt trigger or a comparator. Previously, we proposed
an alternative three-level device and demonstrated its high performance for subthreshold sig-
nal reception in an SR receiver. In the present study, we show that our proposed three-level
device outperforms the three devices and discuss reasons for this superior performance. Con-
tributions of our present paper are twofold: first, we analytically derive bit error rate (BER)
performances of SR receivers installed with a Schmitt trigger and a comparator; second, we
compare performances of the Schmitt trigger, comparator, and three-level device.

Key Words: stochastic resonance, intentional noise, non-dynamical, dynamical, subthreshold,
Schmitt trigger, comparator, three-level device, bit error rate

1. Introduction
Stochastic resonance (SR) is a phenomenon by which a noise enhances a weak signal below a re-
ceiver’s sensitivity [1–5]. Despite the attractiveness of this phenomenon, the SR effect in commu-
nication systems has been little investigated [6–8]. Overcoming receiver sensitivity, equivalently,
receiving subthreshold communication signals, presents special challenges in wireless communication
systems [9–11]. If we realize subthreshold wireless communication systems, we can simultaneously
reduce transmission power and interference among users. Such low-power wireless systems would
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provide energy-efficient green wireless communications and solve wireless spectrum shortage.
This paper discusses the SR effect in a binary communication system for subthreshold signal recep-

tion. We focus on the problem in which communication cannot be established when received signal
strength falls below receiver sensitivity. For subthreshold signal reception, we require a device that
exhibits SR, such as a Schmitt trigger or a comparator. Previously, we proposed an alternative three-
level device and demonstrated its relatively good performance for subthreshold signal reception in an
SR receiver [10].

A Schmitt trigger is a well-known SR-exhibiting device [12–14]. Because the trigger’s output is
fixed to one of two voltages, its dynamics are modeled as two-state systems. Furthermore, the trigger
is hysteretic within the range of inputs for which a circuit is bistable. A famous study by McNamara
and Wiesenfeld demonstrates the practicality of a Schmitt trigger in SR systems [12]. Following
this pioneering work, Melnikov proved that an ideal Schmitt trigger is the simplest two-state system
that realizes SR [13]. As a dynamic device (possessing a memory effect), a Schmitt trigger should
outperform a non-dynamical device (which lacks a memory effect). In general, because of a memory
effect, dynamical systems yield higher SNR than non-dynamical system [14].

Comparators belong to the class of non-dynamical SR systems with a threshold-triggered device [12].
However, a comparator is a poor performer in subthreshold signal reception because a single threshold
determines whether a signal is above the device’s sensitivity. This threshold can be set positive or
negative without affecting performance, but in either case, signals of opposite polarity are lost.

Contrary to popular opinion that dynamical SR systems perform better than non-dynamical sys-
tems, we have demonstrated strong subthreshold signal reception by an SR receiver installed with
our three-level non-dynamical device [10]. The desirable performance of the three-level device can be
explained by scrutinizing states of a subthreshold signal.

A subthreshold signal is defined as a signal below a receiver’s sensitivity. Let the signal threshold
be η, and suppose that a bipolar non-return-to-zero pulse is a subthreshold baseband signal that is
input to an SR receiver. Then, a signal plus noise is observable by the receiver only when the signal
strength exceeds +η or −η. When the signal is below the receiver’s sensitivity (±η), no signal is
observed. Thus, a subthreshold signal is modeled as a signal with positive, negative, and zero states.
Because the three-level device well corresponds to the subthreshold signal model (three-state signal),
the performance of the device may exceed that of Schmitt trigger and comparator. Indeed, as shown
later in this paper, the three-level device delivers the best performance among the three devices.

The present study aims to understand the superior performance of the three-level device in receiving
subthreshold communication signals. Three SR devices are considered: Schmitt trigger, comparator,
and three-level device. The Schmitt trigger is a dynamical device with a memory effect, whereas
the comparator and three-level device are non-dynamical devices and are distinguished chiefly by
their number of thresholds. The comparator has a single threshold, and the three-level device has
two thresholds. To compare performances of these systems, we analytically derive the bit error rate
(BER) of SR systems installed with the comparator and the Schmitt trigger and adopt the BER of
the three-level device reported in [10].

Contributions of our present study are twofold: first, we analytically derive BER performances of
Schmitt trigger- and comparator-based SR receivers. Because outputs of these devices are stochastic,
they involve occurrence probabilities. Using these probabilities, we derive the exact BER perfor-
mances and confirm their consistency with the simulation results. Second, we compare performances
of Schmitt trigger, comparator, and three-level device. We discuss in detail the superior performance
of the three-level device in receiving subthreshold communication signals. We further note that com-
parator better detects subthreshold signals than the Schmitt trigger. This result is unexpected but is
traceable to the memory effect of the Schmitt Trigger, which degrades the performance of subthresh-
old signal reception. In numerical evaluations, the three-level device exhibits the best performance
among the three devices and is strongly compatible with binary communication systems.

The remainder of this paper is organized as follows. Sections 2 and 3 present the system model and
BER performance analysis, respectively, of SR receivers with the Schmitt trigger and comparator.
In Section 4, BER performances and their comparisons are numerically evaluated. Conclusions are
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Fig. 1. Example of the subthreshold signal (a) and the subthreshold signal
plus channel noise and intentional noise (b).

Fig. 2. System model of SR receiver.

presented in Section 5.

2. System model
In this study, a received signal level is assumed to be below receiver sensitivity. Denoting the received
signal level by A and the receiver sensitivity by η, we observe that |A| < η (see Fig. 1(a)). As shown
in Fig. 1(a), such subthreshold signals cannot be detected by a conventional receiver. Furthermore,
when a noise is added to the signal (Fig. 1(b)), the combined signal is observable by the receiver
only when its strength exceeds +η or −η. When the signal is below the receiver’s sensitivity (±η),
no signal is observed. Thus, a subthreshold signal is modeled as a signal with three states: positive
(+η), negative (−η) and zero. As discussed later (see 4.2), the three-level device well corresponds to
the subthreshold signal model (with three-state signals) and yields the best performance among the
tested devices.

Figure 2 shows the system model of the SR receiver. The SR system receives a desired signal s(t)
and channel noise nc(t). The desired signal s(t) is expressed as follows:

s(t) =
∑

i

dig(t − iTs). (1)

Here di is the binary data sequence {±1} of the ith symbol, Ts is the symbol duration, and g(t)
is a rectangular pulse such that g(t) = +1 in 0 ≤ t < Ts/2 and g(t) = −1 in Ts/2 ≤ t < Ts.
This pulse signal s(t), which is known as the Manchester code, is shown in the symbol duration in
Fig. 3. Throughout the symbol duration, positive and negative signals have the same interval. This
contributes to the decision rule. The data of di = +1 and di = −1 occur randomly.

At the receiver, the signal of level A is added to the channel noise nc(t). The received signal is
expressed as follows.

r(t) = As(t) + nc(t). (2)

The channel noise nc(t) is a zero-mean white Gaussian noise with variance σ2
c .

The channel noise is dominated by a thermal noise in the receiver; thus, its power spectral density
(PSD) is assumed to be uniform. The PSD is given by N0 = kBT0, where kB is the Boltzmann constant
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Fig. 3. Manchester code s(t) in the symbol duration for di = +1 (left)
and di = −1 (right).

and T0 is the noise temperature. Setting T0 = 300 K, the noise PSD is computed as N0 � 4.1× 10−21

W/Hz.
Unfortunately, the channel noise is always added to the received signal and is inseparable from a

signal component. Different from a conventional receiver, the SR receiver adds an intentional noise
at the receiver front end and can thus detect subthreshold signals. Once a signal has been detected
by the SR system, it can be managed by conventional receivers. Figure 1(b) illustrates a simple SR
effect, i.e., the detection of a subthreshold signal with an additional intentional noise. The depicted
signal is obtained by adding both channel and intentional noises to the subthreshold signal shown in
Fig. 1(a). The intentional noise nSR(t), assumed as the zero-mean white Gaussian noise with variance
σ2

SR, should be tuned to optimize SR receiver performance.
Reception sensitivity can be modeled as the threshold of simple nonlinear devices exhibiting the SR

effect. The received signal, composed of As(t), nc(t), and nSR(t), is fed into the nonlinear device. In
this study, comparator and Schmitt trigger are adopted as the non-dynamical and dynamical devices,
respectively. In 4.2, performances of both devices are compared with that of the three-level device [10].

Input-output characteristics of the comparator and Schmitt trigger are shown in Fig. 4. Note
that the comparator has two outputs and one threshold. Although the Schmitt trigger exhibits
hysteresis from the memory effect, the comparator outputs depend on current input. Provided that
the subthreshold signal plus noise exceeds the threshold, the subthreshold signal is detectable when
the noise is optimally tuned. This phenomenon is known as SR.

The output of the comparator in response to an input signal rSR(t) is given by

y(t) =

{
+V (rSR(t) > η)

−V otherwise
. (3)

In the Schmitt trigger, the threshold depends current state as follows:

Vth =

{
−η if y(t) = +V

+η if y(t) = −V
. (4)

A Schmitt trigger fed with an input signal rSR(t) yields the output as follows:

y(t) =

{
−V if rSR(t) < Vth

+V if rSR(t) > Vth

. (5)

The threshold η of the Schmitt trigger or comparator is assumed equivalent to the reception sensitivity
of a conventional receiver.

These outputs of non-linear devices are sampled N times during the symbol duration and are
multiplied by g(t) for detection. Denoting a sample of the device output as yi[n], we express the
decision variable yi as

yi =
N−1∑
n=0

yi[n]g[nTs/N ]. (6)
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Fig. 4. Input-Output characteristics of a Schmitt trigger (a) and a Compara-
tor (b).

The data are restored in the detector using the decision variable with a decision threshold. Data
restoration depends on whether the output is positive or negative as shown below:

d̂i =

{
+1 (yi > 0)

−1 otherwise
. (7)

That is, the detector makes the major decision. The BER performance improves with increasing N .
In our system, high sampling rate will enhance the subthreshold signal. Thus, our system is applicable
to small-bandwidth scenarios.

Note that decision making is based on characteristics of the device and the desired signal. Because
comparator thresholds are asymmetric (see Fig. 4(b)). P [y(t) = +V ] and P [y(t) = −V ] are asym-
metric between the signal levels +A and −A. To avoid this asymmetry, we specify that signals in the
data di = ±1 become positive and negative over identical intervals during the symbol duration.

3. BER analysis method for the SR system

In this section, we analytically evaluate the BER performance of comparator- and Schmitt trigger-
based SR systems. These devices output +V or −V with probabilities depending on the input rSR(t).
We derive these probabilities and thereby calculate the BER.

3.1 Comparator

In response to a Gaussian input rSR(t), with mean As(t) and variance σ2
c + σ2

SR, the comparator
stochastically outputs the value −V or +V . The probability of a +V output is straightforwardly
derived as

P [y(t) = +V ] =
1
2
erfc(

η − As(t)√
2(σ2

c + σ2
SR)

). (8)

In Eq. (8), erfc(u) = 2√
π

∫ +∞
u

exp(−t2)dt is the complementary error function. The probability of a
−V output is then derived as

P [y(t) = −V ] = 1 − P [y(t) = +V ].

= 1 − 1
2
erfc(

η − As(t)√
2(σ2

c + σ2
SR)

). (9)

The data restoration decision depends on the output of the SR system (see Eq. (7)). The data
are restored as +1 if +V is sampled at least N/2 times; otherwise, they are restored as −1. Note
that because input signals are assumed as the Manchester code (Fig. 3), the sample number is N/2
whenever +V or −V is sampled. The BER is then derived as follows:
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BER = P [d̂i = +1|di = −1]P [di = −1] + P [d̂i = −1|di = +1]P [di = +1].

=
1
2
P [yi > 0|di = −1] +

1
2
P [yi ≤ 0|di = +1].

=
1
2
P

[N−1∑
n=0

yi[n]g[nTs/N ] > 0|di = −1
]
+

1
2
P

[N−1∑
n=0

yi[n]g[nTs/N ] ≤ 0|di = +1
]
. (10)

If di = −1, an error occurs when the number of samples yi[n] = −V in 0 ≤ n < N/2 or when
yi[n] = +V in N/2 ≤ n < N is less than N/2. This error arises because g(t) = −1 in 0 ≤ t < Ts/2
and g(t) = +1 in Ts/2 ≤ t < Ts. After N/2 trials, occurrence probabilities of these events follow a
binomial distribution. Denoting the number of samples yi[n] = −V in 0 ≤ n < N/2 and yi[n] = +V

in N/2 ≤ n < N as x and y, respectively, and assuming binomial distributions, the first term in
Eq. (10) becomes

P
[N−1∑

n=0

yi[n]g[nTs/N ] > 0|di = −1
]
.

=
∑

0≤x+y<N/2
x≤N/2,y≤N/2

(
N/2
x

)
P [y(t) = −V |di = −1]xP [y(t) = +V |di = −1]N/2−x

×
(

N/2
y

)
P [y(t) = +V |di = −1]yP [y(t) = −V |di = −1]N/2−y.

=
∑

0≤x+y<N/2
x≤N/2,y≤N/2

(
N/2
x

){
1 − 1

2
erfc(

η + A√
2(σ2

c + σ2
SR)

)
}x{1

2
erfc(

η + A√
2(σ2

c + σ2
SR)

)
}N/2−x

×
(

N/2
y

){1
2
erfc(

η − A√
2(σ2

c + σ2
SR)

)
}y{

1 − 1
2
erfc(

η − A√
2(σ2

c + σ2
SR)

)
}N/2−y

. (11)

The error probability for di = +1 is derived in the same manner. In the case that N is even, these
error probability of di = −1 or di = +1 are identical. In this present study, we set N is even. For
even N , we derive the BER for the comparator-based SR as follows:

BER

=
∑

0≤x+y<N/2
x≤N/2,y≤N/2

(
N/2
x

){
1 − 1

2
erfc(

η + A√
2(σ2

c + σ2
SR)

)
}x{1

2
erfc(

η + A√
2(σ2

c + σ2
SR)

)
}N/2−x

×
(

N/2
y

){1
2
erfc(

η − A√
2(σ2

c + σ2
SR)

)
}y{

1 − 1
2
erfc(

η − A√
2(σ2

c + σ2
SR)

)
}N/2−y

(12)

If N is odd, we can derive it in the same manner. Note that N being even or odd does not affect the
BER performance.

3.2 Schmitt trigger

To analyze the device using the Schmitt trigger, we adopt the Markov model shown in Fig. 5. This
model has two, indicated “−V ” and “+V ”. In the “−V ” state, the Schmitt trigger outputs −V ; in
the “+V ” state, it outputs +V . In the present study, we initialize this model to the “+V ” state. The
probability of a transition from state i to j, where i, j ∈ {−V, +V }, is denoted by Pi→j . Transition
probabilities and outputs are illustrated in Fig. 5. Transition probabilities are as follows:
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Fig. 5. Analysis model for the Schmitt trigger.

P−V →−V = 1 − 1
2
erfc(

η − As(t)√
2(σ2

c + σ2
SR)

). (13)

P−V →+V =
1
2
erfc(

η − As(t)√
2(σ2

c + σ2
SR)

). (14)

P+V →−V =
1
2
erfc(

η + As(t)√
2(σ2

c + σ2
SR)

). (15)

P+V →+V = 1 − 1
2
erfc(

η + As(t)√
2(σ2

c + σ2
SR)

). (16)

As shown in Eq. (10), the BER depends on whether the output level of the SR system yi is positive
or negative. Comparator and Schmitt trigger differ in one respect only; the current output sample of
the Schmitt trigger yi[n] depends on the previous sample yi[n − 1]. Thus, the BER is derived from
the Markov model shown in Fig. 5.

As an example, consider the case of N = 2 and di = +1. Errors occur when the sample yi[0] = −V

and yi[1] = +V , yi[0] = −V and yi[1] = −V , and yi[0] = +V and yi[1] = +V ; probabilities of these
errors are denoted P+V →−V ×P−V →+V , P+V →−V ×P−V →−V , and P+V →+V ×P+V →+V , respectively.
In the case of N = 2 and di = −1, errors occur when yi[0] = +V and yi[1] = −V , with probabilities
of P+V →+V × P+V →−V . Thus, in the case of N = 2, the BER is derived as follows.

BER(N = 2)

=
1
2
erfc(

η + A√
2(σ2

c + σ2
SR)

) × 1
2
erfc(

η + A√
2(σ2

c + σ2
SR)

)

+
1
2
erfc(

η + A√
2(σ2

c + σ2
SR)

) × {
1 − 1

2
erfc(

η + A√
2(σ2

c + σ2
SR)

)
}

+
{
1 − 1

2
erfc(

η + A√
2(σ2

c + σ2
SR)

)
} × {

1 − 1
2
erfc(

η − A√
2(σ2

c + σ2
SR)

)
}

+
{
1 − 1

2
erfc(

η − A√
2(σ2

c + σ2
SR)

)
} × 1

2
erfc(

η + A√
2(σ2

c + σ2
SR)

). (17)

The BER for N > 2 is derived in the same manner.

4. Numerical results
In this section, we evaluate the BER performance installed with the Schmitt trigger, comparator,
and three-level device. We show that our proposed three-level device outperforms the Schmitt trigger
and comparator. First, we present analytical and numerical simulation results of the Schmitt trigger
and comparator. The results show that the performance of the comparator is superior to that of
the Schmitt trigger. Next, we compare the exact BER of the three-level device with that of the
Schmitt trigger and comparator in Sec. 4.2 and Sec. 4.3, respectively. Numerical results show that
the three-level device exhibits the best performance among these devices.

4.1 BER performances of SR receivers installed with Schmitt trigger

and a comparator
Figure 6 plots the BER performance versus the PSD of the intentional noise in SR receivers installed
with the Schmitt trigger and the comparator. Solid lines and points represent analytical and sim-
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Table I. Parameter settings in computer simulation.

Parameter Value

Channel noise and intentional noise AWGN
PSD of Channel noise [10−21 W/Hz] 4.1

Symbol duration Ts [μs] 1.0
Received signal level A [μV ] 1.0

Sensitivity of conventional receiver η [μV ] 1.1
Numbers of samples per symbol N 10

Number of trials for simulation 105

Fig. 6. BER performances of Schmitt trigger- and comparator-based SR re-
ceivers.

ulation results, respectively. Parameter settings are shown in Table I. Clearly, BER performances
improve with increasing PSD of the intentional noise. This trend typifies the SR phenomenon. The
figure also reveals the applicability of the analysis method to the system model because analytical
and simulation results perfectly coincide.

Unexpectedly, the minimum BER of the comparator is lower than that of the Schmitt trigger. Given
the memory effect of the Schmitt trigger, its performance should outshine that of the comparator.

For further discussion, we consider the dominant error in the SR receiver with the comparator. In
Eq. (12), we assume that the term 1

2erfc( η+A√
2(σ2

c+σ2
SR)

) ∼ 0 because the function erfc(u) is monotonically

decreasing and approaches zero at sufficiently large u. Under this assumption, all terms other than
at x = N/2 (and y = 0) are neglected. Eq. (12) reduces to the equation as follows:

BER ∼
{

1 − 1
2
erfc(

η − A√
2(σ2

c + σ2
SR)

)
}N/2

. (18)

BERs computed by Eq. (18) for different sample numbers per symbol (N = 6 and 10) are plotted
as dashed lines in Fig. 7 (the solid lines plot the BER performance of the SR receiver with the
comparator). Other parameter settings are unchanged from the previous analysis. Clearly, results
of Eq. (18) almost match the BER performance in the relatively small PSD of the intentional noise.
Thus, the non-neglected term of Eq. (18) dominates the error. In a large PSD of intentional noise,
there is a gap between the solid line and dashed line. This occurs because the large PSD of intentional
noise means a small argument u of erfc(u). Thus, the effect of the neglected term on BER performance
increases.

Equation (18) computes the probability that at a received signal level A (< η), N/2 samples have
not exceeded the threshold η of the comparator. This probability governs the BER performance of
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Fig. 7. Dominant errors in BER performances of the comparator-based SR
receiver.

Fig. 8. Input-output characteristics of the three-level device.

the comparator-based system, and the error probability is decreased by increasing intentional noise.
However, the dominant error in the Schmitt trigger is not easily decided because it also depends on
the memory of the Schmitt trigger. To answer the question “Why does the comparator outperform
the Schmitt trigger?,” we compare performances of SR receivers installed with the Schmitt trigger
and three-level device.

4.2 Performance comparison of SR receivers installed with a Schmitt trigger

and three-level device
In this subsection, we discuss why a Schmitt trigger yields a poorer BER performance than a non-
dynamical device in an SR receiver. We surmise that the memory feature of a Schmitt trigger
negatively affects BER performance. To explain this effect, we consider the three-level device, a
simple threshold device without a memory (see Fig. 8). Similar to a Schmitt trigger, the three-level
device has two non-zero outputs and two thresholds but admits an additional zero output with no
contribution to detection.

In our previous research, we proposed an analysis method for the SR receiver installed with the
three-level device [10]. Using the same method, we now compare performances of these devices.
Figure 9 plots the BER performance versus the PSD of the intentional noise in SR receivers installed
with the Schmitt trigger and three-level device. Parameter settings are those of Table I. The three-
level device outperforms the Schmitt trigger, because of its zero output in the subthreshold region
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Fig. 9. BER performance of the SR receiver based on the three-level device.

Fig. 10. Input-output characteristics of three-level device after changing the
threshold.

which cannot be detected by conventional receivers. In the Schmitt trigger, information is maintained
in the subthreshold region, degrading the BER performance. Moreover, unlike the comparator, the
three-level device is strongly compatible with binary communication systems. Performances of the
comparator and three-level device are compared in the next subsection.

4.3 Performance comparison of SR receivers installed with comparator

and three-level device
This subsection compares performances between the comparator and three-level device. For this
purpose, we change the threshold −η to η′ within the subthreshold region η′ ≤ −A or A ≤ η′, as
shown in Fig. 10. According to characteristics, the output of the three-level device alters as follows:

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

+V (rSR(t) > η)

−V (rSR(t) < η′)

0 otherwise

. (19)

When η′ = η, input-output characteristics of the three-level device and comparator coincide.
Figure 11 plots BER performances of the three-level device after changing the threshold. Specifi-

cally, we increased the threshold η′ from 1.0μV to 1.1μV , maintaining other parameters at their values
in Table I. In this situation, the received signal level is below the device threshold. As the threshold
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Fig. 11. BER performances of three-level device after changing the threshold.

η′ approaches η, BER performances of the three-level device and comparator converge. This analysis
demonstrates the superior BER performance of the three-level device over the comparator.

5. Conclusion
In this study, we considered a binary communication with SR systems for subthreshold signal recep-
tion. We focused on the basic SR devices of the Schmitt trigger, comparator, and three-level device
and compared the performance of these devices. For comparison of these devices, we proposed an
analysis method for SR receivers installed with a Schmitt trigger and a comparator and evaluated
BER performances of both devices. Numerical results show improvements of the BER performances
by SR and exactly coincide with calculated BER performances. In performance comparisons, the
comparator was found to outperform the Schmitt trigger. The poorer performance of the Schmitt
Trigger was attributed to the memory effect, which degrades subthreshold signal reception. We then
compared the BER performance of our three-level device (a simple threshold device without a mem-
ory) with those of comparator and Schmitt trigger. According to numerical results, our three-level
device exhibits the strongest performance among the tested devices; moreover, it is compatible with
binary communication systems.
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