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Abstract— This paper proposes the error-correcting for nonco-
herent chaos communications. To improve the error performance,
we focus attention on the successive chaotic sequence based
on the chaotic dynamics. Concretely, error performance of a
noncoherent receiver improves by analyzing the chaotic dynamics
of the successive received sequence. As results of computer
simulations, we confirm about 3 dB gain in BER performance
compared to the conventional suboptimal receiver.

I. INTRODUCTION

Recently, research on digital communications systems using
chaos becomes a hot topic [1]— [3]. Especially, it is attracted
to develop noncoherent detection systems which do not need
to recover basis signals (unmodulated carries) at the receiver.
In this study, we focus attention on the optimal receiver which
is one of typical noncoherent systems [1]. The optimal receiver
performs an optimal detection by using the probability density
function (PDF) between the received signals and the same
chaotic map of the transmitting side. However, the optimal
receiver suffers from a computational complexity due to the
large chaotic sequence length. Thus, it is important to develop
a receiver with performance equivalent to the optimal receiver
using different algorithms, i.e., a suboptimal receiver.

In our previous research, we proposed the suboptimal re-
ceiver using the shortest distance approximation [4]. Instead
of calculating the PDF, the proposed suboptimal receiver
approximates the PDFs by calculating the shortest distance
between the received signals and the chaotic map. As results
of the computer simulations, we confirmed the validity of the
proposed suboptimal receiver as an approximation method of
the optimal receiver.

In this study, to improve the error performance of the subop-
timal receiver more, we propose an error-correcting method for
the suboptimal receiver. Note that the detection characteristic
of the suboptimal receiver is not superior to the optimal
receiver. To solve this problem, we focus attention on the
successive chaotic sequence based on the chaotic dynamics.
Concretely, we can create the successive chaotic sequences
having the same chaotic dynamics. This feature gives the re-
ceiver additional information to correctly recover the received
noisy signal. Therefore, by analyzing the chaotic dynamics at
the receiver, it is possible to improve the error performance. As
results of computer simulations, we confirm about 3 dB gain
in BER performance compared to the conventional suboptimal
receiver.

II. SYSTEM OVERVIEW
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Fig. 1. Block diagram of discrete-time binary CSK communication system.

We consider the discrete-time binary CSK communication
system, as shown in Fig. 1. In the transmitter, a chaotic
sequence is generated by a chaotic map. In this study, we
use a skew tent map which is one of simple chaotic maps, as
described by Eq. (1)
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where a denotes a position of the top of the skew tent map.
The information symbol is modulated by Chaos Shift Keying
(CSK) which is a digital modulation system using chaos.
When the transmitter generates the signals, we use chaotic
sequences generated by different chaotic maps depending on
the value of an information symbol. If the information symbol
“1” is sent, Eq. (1) is used, and if “0” is sent, the reversed
function of Eq. (1) is used. To transmit a 1-bit information, N
chaotic signals are generated, where IV is the chaotic sequence
length.

In this study, to perform the error-correcting by the receiver,
information are transmitted by a packet which consists of a
data part and a redundancy part, as shown in Fig. 2, where
S; is the transmitted signal vector, j = (0,1,---, K — 1), K
is total bit per packet, Seq *“1” and Seq 0’ are the chaotic
sequence. Note that the transmitted signal vector S; is different
for each symbol.

[When the symbol “1” is sent]

S; = (; f(l)(xj) . "f(i)(ﬁljj) .. .f(N—l)(xj)) )
[When the symbol “0” is sent]
S; = (y; g(l)(yj) .. -g("')(yj) . --g(N_l)(yj)) 3)
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Fig. 3. Calculation of the shortest distance.

where (V) and ¢(* are the function of the skew tent map
for symbol “1” and “0”, i is the iteration of f or g, x;
or y; denotes the initial value of the jth symbol = *“1”
or “0” respectively. When K bits data are transmitted, the
length of the data part becomes K x N. The redundancy
is the sequence which has the known information symbol,
and its length is different depending on the error-correcting
method. In addition, the initial value of the chaotic sequence
is also different in each chaotic signal generator and is updated
each packet, namely, the chaotic sequence generated by each
generator in the packet is a successive sequence based on the
chaotic dynamics. As an example, let us assume the jth and
( + 3)th symbols are “1” (i.e. the (j + 1)th and (j + 2)th
symbols are “0”). In this case, z;13 becomes f(N)(x;). In the
same way, y;+2 becomes g™ (y;1). Moreover, Seq “1”” and
Seq “0” are also a successive sequence based on the chaotic
dynamics.

The channel distorts the signal and corrupts it by noise.
In this study, noise of the channel is assumed to be the
additive white Gaussian noise (AWGN) Thus, the received
signals block is given by R; = (Rj0 Rj1---Rjn-1) =
S; + AWGN.

The receiver recovers the transmitted signals from the re-
ceived signals and demodulates the information symbol. Also,
the receiver performs the error-correcting in this study. Since
we consider a noncoherent receiver, the receiver memorizes the
chaotic map used for the modulation at the transmitter. How-
ever, the receiver never knows the initial value of chaos and the
information symbol in the transmitter. Before explaining the
error-correcting, we introduce the operation of our suboptimal
receiver to be the basis for the proposed error-correcting.

Our suboptimal receiver calculates the shortest distance
between the received signals and the chaotic map in the
Ngy-dimensional space using N, successive received signals
(Ng:2,3,--+). As an example, we explain the case of Ny =
3. In this case, the receiver calculates the shortest distance
between R and the chaotic map using the scalar product of
the vector, where R is the three successive received signals
R = (Rj;, Rji+1, Rji+2), R;; denotes the jth symbol and
Ith signal of the received signals ({ = 0 1---N — 3). Any
two points of Po = (o, y0,20) and Py = (21,91, 21) are
chosen from each straight line in the space, as shown in Fig. 3.

Using Fig. 3, we can calculate P = (X,Y, Z) and the shortest
distance D by the following equations.

P:(X7Y,Z):(U'V0)U+P0 (4)
D = [[P-R] )
where
) P; - Py
Unit vectoru = ——— 6)
By Pol (
vo = R-—Pyp . @)

Note that if the point is outside the cube, we calculate the
distance between the point and the nearest edges of the maps.

For the 3-dimensional case, there are four straight lines in
the space. Therefore, the minimum value in four distances is
chosen as the shortest distance D; for symbol “1”. In the same
way, D of symbol “0” is chosen as Dy. We calculate both of
D and Dy for all [ and find their summations Y D; and
>~ Dy. Finally, we decide the decoded symbol as 1 (or 0) for
ZDl < ZDO (or ZDl > ZDo)

The calculation of the shortest distance can be extended to
Ng-dimensional space for Ny > 4.

III. PROPOSED ERROR-CORRECTING METHOD

Our proposed error-correcting method calculates the shortest
distance by the double or triple of the sequence length N
which used for the modulation in the transmitter, i.e. the
double or triple dimension (Ngq = 2N or 3N). Figure 4(a)
shows the image of the operation of the error-correcting. To
simplify the explanation, we assume the redundancy length
to be 2IN. The redundancy is the sequence which has the
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Fig. 4. Proposed Error-Correcting Method (Ng = 2N).
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known information, “1” and “0”. Here, let us expect that the
j = (K — 1)th bit is “1” or “0”. Since the (K — 1)th bit
is “1” or “0” and the redundancy has “1” or “0” certainly,
the (K — 1)th bit sequence also has the relation with either
of two types of the sequence based on the chaotic dynamics.
Moreover the (K — 2)th sequence also has the relation with
either of three types of the sequence. Thus we can consider
the 7 and j — 1th bit as the four pattern, as shown in Fig 4(b),
where D1 (.) and Dy(.) mean the shortest distance between the
chaotic map of Symbol “1” and “0”, respectively. Since the
sequence connected two types becomes the double sequence
length, we can calculate the shortest distance using Ng = 2N-
dimensional space. We calculate each distance like the pattern
of Fig 4(b). Finally, we choose the pattern of the shortest
distance out of the four patterns, and the (K — 1)th bit
is decided accurately. By using this determined symbol for
detection of the next bit, these operation can be shifted and it
can demodulate to all information. Therefore, the likelihood of
information can improve by expecting the combination of the
sequence based on the chaotic dynamics, and we can detect
information in high accuracy. In this case, the coding rate
becomes KLH

In the same way, we can calculate the shortest distance using
N4 = 3N-dimensional space to perform the error-correcting.
In this case, the redundancy length is 4N, the combination of
the sequence becomes the eight patterns and the coding rate
becomes KL_M.

IV. SIMULATION RESULTS

To evaluate the proposed error-correcting method, we carry
out computer simulations with following simulation condi-
tions. In the transmitting side, the packet consists of the data
part with K = 64 bits and the redundancy part with 2V or 4N.
In this case, each coding rate becomes 0.96 or 0.94. Here, the
parameter of the skew tent map is fixed as a = 0.05, and we
use the chaotic sequence length N = 3 and 4. To compare the
performance of N;-dimensional space, we use Ny = 2N and
N4 = 3N. Based on these conditions, we iterate the simulation
10,000 times and calculate the average of BERs.

Figures 5(a) and (b) show the BERs versus E;/Ny for
N =3 and N = 4, respectively. To compare the performance
of the error-correcting method, Figs. 5(a) and (b) also show the
performance of our suboptimal receiver without the coding.
From these results, we observe that the both BERs of the
error-correcting method show gain over the system without
the coding. Significant improvements are observed for N = 4
with N; = 3N-dimensional. In this case, since the receiver
calculate the shortest distance using N; = 12-dimensional
space, the computation complexity also increase. As our
receiver calculates the likelihood of the received symbols not
only by the shortest distance between the received signals
and the chaotic map but also analyze the chaotic dynamics
of the successive symbols, the likelihood of the received sym-
bol increase and the performance improvement is achieved.
Moreover, although the cording rate is very high, the proposed
method can well correct the error. Therefore, we can say that
the efficiency of the proposed error-coding is excellent.

However, we also confirm that the curve of the proposed
method of N = 3 with Ny = 3/N-dimensional space corre-
sponds that with N; = 3N -dimensional, as shown in Fig. 5(a).
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Fig. 5. Simulation results.

We have not clearly understood the reason why two curves
correspond, yet. We would like to investigate and analyze the
chaotic sequence and its behavior in detail when our error-
correcting method is used.

V. CONCLUSIONS

In this study, to improve the error performance of the sub-
optimal receiver more, we have proposed the error-correcting
method using the features of chaos for the suboptimal receiver.
As results, we have confirmed that the likelihood of the
received symbol increases and obtained the 3dB gain in error
performance.
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