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Abstract—In this paper, we analyze two simple stochastic
resonances with various noise levels. First, it is analyzed that
SR in a double-well potential which is well-known as a typical
bistable SR model. Second, we add a one dimension to the bistable
SR model and increase two stable states to the model, namely, the
system is extended to “four-stable state”. Using these SR models,
we carry out computer simulations and analyze the state of SR
when the intensity of the noise is changed.

I. I NTRODUCTION

Stochastic resonance (SR) is a nonlinear phenomenon in
which a responsiveness of a system is improved by adding
suitable noise to certain nonlinear systems. Recently, SR has
attracted a great deal of attention from a variety of researchers,
including nonlinear circuits and systems, semiconductor de-
vices and biology[1]–[5]. In this paper, we consider that
SR is applied to a communication system which is one of
engineering systems. In standard communication systems, the
signal detection becomes difficult according to increase a noise
level. We expect that it is possible to detect the signal, which
is influenced significantly by noise, by applying SR to the
communication systems. For robustly detecting the signal in
the communication system using SR, a control of SR by
noise is very important task. Therefore, we consider that it is
necessary to investigate a relationship between SR and noise.

Based on the above research background, this paper focuses
on an analysis of SR with various noise levels using simple
SR model. First, we analyze SR in a double-well potential
which is well-known as a typical bistable SR model. The
bistable system has two stable states (+1 or −1). Thus, we can
regard the two stable states as 1bit data in the communication
systems. Next, we add a one dimension to the bistable SR
model and increase two stable states to the model, namely,
the system is extended to “four-stable state”. In this paper, we
call the extended SR model “SR in a quadruple-well potential”.
Here, four-stable states of the extended system are (−1, −1),
(+1, −1), (−1, +1) and (+1, +1). Thus, we can regard the
two stable states as 2bit data in the communication systems.

This paper describes an outline of SR in the quadruple-well
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Fig. 1. Mechanism of SR in bistable system.

potential. In addition, we carry out computer simulations and
analyze the state of SR when the intensity of the noise is
changed.

II. SR IN DOUBLE-WELL POTENTIAL

Here, we briefly explain SR in the double-well potential. In
Ref. [5], the bistable SR is performed by following equations

dx

dt
= f(x) + Dn(t) + s(t) (1)

s(t) = A sin(2πf0t) (2)

f(x) = −dU0(x)
dx

(3)

U0(x) = −1
2
x2 +

1
4
x4 (4)

Where U0(x) is a bistable potential having two local mini-
mums,x is a state variable,s(t) is an input signal,A is an
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Fig. 2. Four-ideal-stable states.

amplitude of the input signal,n is assumed to be the additive
white Gaussian noise AWGN,D is an intensity of noise. An
effective potentialU(x, t) is described as follows.

U(x, t) = U0(x) + xs(t)

= −1
2
x2 +

1
4
x4 + xA sin(2πf0t) (5)

Figure1 shows a mechanism of SR in the bistable system.

III. SR IN QUADRUPLE-WELL POTENTIAL

In this study, we add a new state variable “y” to this bistable
system and extend the system to SR in the quadruple-well
potential. First, based on Eq. (1), the equation of the statex
is described as follows.

dx

dt
= f(x) + Dxnx(t) + s(t) (6)

Wherenx is noise added to the statex, Dx is an intensity of
noise for the statex. Next, the equation of the new statey is
described as follows.

dy

dt
= f(y) + Dyny(t) + s(t) (7)

f(y) = −dU0(y)
dy

(8)

U0(y) = −1
2
y2 +

1
4
y4 (9)

Whereny is noise added to the statey, Dy is an intensity of
noise for the statey. In this study,nx and ny are assumed
to be (AWGN). Additionally, the values ofnx and ny are
different from each other. In other words, thenx andny are
independent of each other.
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Fig. 3. Output of SR in four-stable state (Dx = Dy).

IV. SIMULATION RESULTS

A. Simulation conditions

Using the above system, we carry out computer simulations.
In the simulation, the two states are expressed in (x, y) planes
a coordinate (point(x, y)). Figure 2 shows four-ideal-stable
states of SR in the quadruple-well potential in(x, y) plane.
By changingDx and Dy (i.e. noise level), we experiment
to control four-stable states in this plane. As parameters of
the simulation, the initial condition ofx & y is “+1”, t =
100, 000.

B. Results of same noise level(Dx = Dy).

Figure 3 shows simulation results for same noise level
Dx = Dy. First, in the case ofDx = Dy = 0 (Fig. 3(a)),
we can observed that the point(x, y) centers around(+1, +1)
since noise is not added to the system. Second, in the case of
Dx = Dy = 10 (Fig. 3(b)), it can be confirmed that the
point (x, y) moves the potential barrier and moves around
the four-stable states. Third, in the case ofDx = Dy = 30
(Fig. 3(c)), the point (x, y) continually hops the potential
barrier. However, we can see that the point(x, y) does not
stay in one-stable state for a long time although the point
(x, y) moves around the four-stable states. Finally, in the case
of Dx = Dy = 60 (Fig. 3(d)), it can be observed that the point
(x, y) move around(x, y) plane, regardless of the four-stable
states.

C. Results of different noise level (fixedDx, variable Dy).

Next, Fig.4 shows simulation results for fixedDx = 10 and
variableDy. First, in the case ofDy = 0 (Fig. 4(a)), the point
(x, y) moves a little iny-axis. On the other hands, the point
hops only inx-axis. Second, in the case ofDy = 5 (Fig. 4(b)),
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(a) Dx=10, Dy=0 (b) Dx=10, Dy=5

(c) Dx=10, Dy=10 (d) Dx=10, Dy=15

(e) Dx=10, Dy=20 (f) Dx=10, Dy=30

Fig. 4. Output of SR in four-stable state (fixedDx, variableDy).

we can observe that the point(x, y) frequently hops inx-axis
since the noise level ofx (Dx) is stronger than that ofy (Dy).
Third, in the case ofDy = 10 (Fig. 4(c)), the point(x, y)
symmetrically hops in(x, y) plane becauseDx and Dy are
same values. Fourth, in the case ofDy = 15 (Fig. 4(d)) and
Dy = 20 (Fig. 4(e)), we can find that the number of the point’s
move increases. In other words, the point(x, y) actively hops
in (x, y) plane. Finally, in the case ofDy = 30 (Fig. 4(f)),
the point’s move around the origin is not confirmed in(x, y)
plane. Here, we compare the results of the same noise level
(Dx = Dy) and the different noise level (fixedDx, variable
Dy). By setting the different noise level, we can make the
difference point’s betweenx-axis andy-axis and can confirm
that the point move linearly. Therefore, to use the different
noise levels is effective for controlling the state of the SR in
the quadruple-well potential.

V. CONCLUSIONS

In this paper, we have analyzed SR in the quadruple-well
potential which extended the SR in a double-well potential. As
results of computer simulations, it have been confirmed that
the various point’s moves by changing noise levels. However,
we have performed only the qualitative analysis, such as the

behavior of the point(x, y) , in this study. Therefore, the
quantitative analysis of the SR in the quadruple-well potential,
such as a signal-to-noise ratio (SNR), is our future work.
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